525 research outputs found

    Stretching an heteropolymer

    Full text link
    We study the influence of some quenched disorder in the sequence of monomers on the entropic elasticity of long polymeric chains. Starting from the Kratky-Porod model, we show numerically that some randomness in the favoured angles between successive segments induces a change in the elongation versus force characteristics, and this change can be well described by a simple renormalisation of the elastic constant. The effective coupling constant is computed by an analytic study of the low force regime.Comment: Latex, 7 pages, 3 postscript figur

    Multidimensional Pattern Formation Has an Infinite Number of Constants of Motion

    Full text link
    Extending our previous work on 2D growth for the Laplace equation we study here {\it multidimensional} growth for {\it arbitrary elliptic} equations, describing inhomogeneous and anisotropic pattern formations processes. We find that these nonlinear processes are governed by an infinite number of conservation laws. Moreover, in many cases {\it all dynamics of the interface can be reduced to the linear time--dependence of only one ``moment" M0M_0} which corresponds to the changing volume while {\it all higher moments, MlM_l, are constant in time. These moments have a purely geometrical nature}, and thus carry information about the moving shape. These conserved quantities (eqs.~(7) and (8) of this article) are interpreted as coefficients of the multipole expansion of the Newtonian potential created by the mass uniformly occupying the domain enclosing the moving interface. Thus the question of how to recover the moving shape using these conserved quantities is reduced to the classical inverse potential problem of reconstructing the shape of a body from its exterior gravitational potential. Our results also suggest the possibility of controlling a moving interface by appropriate varying the location and strength of sources and sinks.Comment: CYCLER Paper 93feb00

    New Algorithm for Parallel Laplacian Growth by Iterated Conformal Maps

    Full text link
    We report a new algorithm to generate Laplacian Growth Patterns using iterated conformal maps. The difficulty of growing a complete layer with local width proportional to the gradient of the Laplacian field is overcome. The resulting growth patterns are compared to those obtained by the best algorithms of direct numerical solutions. The fractal dimension of the patterns is discussed.Comment: Sumitted to Phys. Rev. Lett. Further details at http://www.pik-potsdam.de/~ander

    A New Class of Nonsingular Exact Solutions for Laplacian Pattern Formation

    Full text link
    We present a new class of exact solutions for the so-called {\it Laplacian Growth Equation} describing the zero-surface-tension limit of a variety of 2D pattern formation problems. Contrary to common belief, we prove that these solutions are free of finite-time singularities (cusps) for quite general initial conditions and may well describe real fingering instabilities. At long times the interface consists of N separated moving Saffman-Taylor fingers, with ``stagnation points'' in between, in agreement with numerous observations. This evolution resembles the N-soliton solution of classical integrable PDE's.Comment: LaTeX, uuencoded postscript file

    Iterated Conformal Dynamics and Laplacian Growth

    Full text link
    The method of iterated conformal maps for the study of Diffusion Limited Aggregates (DLA) is generalized to the study of Laplacian Growth Patterns and related processes. We emphasize the fundamental difference between these processes: DLA is grown serially with constant size particles, while Laplacian patterns are grown by advancing each boundary point in parallel, proportionally to the gradient of the Laplacian field. We introduce a 2-parameter family of growth patterns that interpolates between DLA and a discrete version of Laplacian growth. The ultraviolet putative finite-time singularities are regularized here by a minimal tip size, equivalently for all the models in this family. With this we stress that the difference between DLA and Laplacian growth is NOT in the manner of ultraviolet regularization, but rather in their deeply different growth rules. The fractal dimensions of the asymptotic patterns depend continuously on the two parameters of the family, giving rise to a "phase diagram" in which DLA and discretized Laplacian growth are at the extreme ends. In particular we show that the fractal dimension of Laplacian growth patterns is much higher than the fractal dimension of DLA, with the possibility of dimension 2 for the former not excluded.Comment: 13 pages, 12 figures, submitted to Phys. Rev.

    A note on the extension of the polar decomposition for the multidimensional Burgers equation

    Full text link
    It is shown that the generalizations to more than one space dimension of the pole decomposition for the Burgers equation with finite viscosity and no force are of the form u = -2 viscosity grad log P, where the P's are explicitly known algebraic (or trigonometric) polynomials in the space variables with polynomial (or exponential) dependence on time. Such solutions have polar singularities on complex algebraic varieties.Comment: 3 pages; minor formatting and typos corrected. Submitted to Phys. Rev. E (Rapid Comm.

    Attractive Interaction Between Pulses in a Model for Binary-Mixture Convection

    Full text link
    Recent experiments on convection in binary mixtures have shown that the interaction between localized waves (pulses) can be repulsive as well as {\it attractive} and depends strongly on the relative {\it orientation} of the pulses. It is demonstrated that the concentration mode, which is characteristic of the extended Ginzburg-Landau equations introduced recently, allows a natural understanding of that result. Within the standard complex Ginzburg-Landau equation this would not be possible.Comment: 7 pages revtex with 3 postscript figures (uuencoded

    Gravity-driven instability in a spherical Hele-Shaw cell

    Full text link
    A pair of concentric spheres separated by a small gap form a spherical Hele-Shaw cell. In this cell an interfacial instability arises when two immiscible fluids flow. We derive the equation of motion for the interface perturbation amplitudes, including both pressure and gravity drivings, using a mode coupling approach. Linear stability analysis shows that mode growth rates depend upon interface perimeter and gravitational force. Mode coupling analysis reveals the formation of fingering structures presenting a tendency toward finger tip-sharpening.Comment: 13 pages, 4 ps figures, RevTex, to appear in Physical Review

    Microscopic Selection of Fluid Fingering Pattern

    Full text link
    We study the issue of the selection of viscous fingering patterns in the limit of small surface tension. Through detailed simulations of anisotropic fingering, we demonstrate conclusively that no selection independent of the small-scale cutoff (macroscopic selection) occurs in this system. Rather, the small-scale cutoff completely controls the pattern, even on short time scales, in accord with the theory of microscopic solvability. We demonstrate that ordered patterns are dynamically selected only for not too small surface tensions. For extremely small surface tensions, the system exhibits chaotic behavior and no regular pattern is realized.Comment: 6 pages, 5 figure
    • …
    corecore